If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+14a=0
a = 7; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*7}=\frac{-28}{14} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*7}=\frac{0}{14} =0 $
| 1/2=x/5-2x/5 | | 8(z+15)=5-(-8z-5) | | 3x-4/5+2x+5/2=1/4 | | 2x2+78=0 | | 9y^2+y-1=0 | | 10(z+11)=5-(-8z-15) | | 2x=-4.8 | | (x-2)(2x+5)=2x+5 | | 5(z+5)=5-(-6z-9) | | 9(z-5)=6-(9z-55) | | y3+y2+y=155 | | y3+y2+y=14 | | 2^2x+2^x+1=2^3 | | S(t)=3t^2-4t+2 | | S(t)=3t²-4t+2 | | 5x=7−2x | | 2t^2-20t+70=0 | | x*0.8=50 | | (12x-19)+(6x+1)=90 | | 50•x+120•(92-x)=8380 | | |x-2|=3x | | a=-2-3(5) | | 4.8w-2.4=2.4 | | 4y+y=0(E0) | | x(-1)/2(-x)=2x+1 | | 2.4y+1.0=3.4 | | 2(-2-3b)+5b=1 | | x-1/2-x=2x=1 | | 5x-10=3x-30x= | | 2(x+-8)=-24 | | a+3(-2)=-1 | | 8=x/3+2 |